
Марс — планета земной группы с разреженной атмосферой. Особенностями поверхностного рельефа Марса можно считать ударные кратеры наподобие лунных, а также вулканы, долины, пустыни и полярные ледниковые шапки наподобие земных.
У Марса есть два естественных спутника, Фобос и Деймос (в переводе с древнегреческого — «страх» и «ужас» — имена двух сыновей Ареса, сопровождавших его в бою), которые относительно малы и имеют неправильную форму. Они могут являться захваченными гравитационным полем Марса астероидами, подобными астероиду 5261 Эврика из Троянской группы
Основные сведения

Из-за низкого давления вода не может существовать в жидком состоянии на поверхности Марса, но вполне вероятно, что в прошлом условия были иными, и поэтому наличие примитивной жизни на планете исключать нельзя. 31 июля 2008 года вода в состоянии льда была обнаружена на Марсе космическим аппаратом НАСА «Феникс» (англ. «Phoenix»).
В феврале 2009 орбитальная исследовательская группировка на орбите Марса насчитывала три функционирующих космических аппарата: «Марс Одиссей», «Марс-экспресс» и «Марсианский разведывательный спутник», это больше, чем около любой другой планеты, кроме Земли. Поверхность Марса в настоящий момент исследовали два марсохода: «Спирит» и «Оппортьюнити». На поверхности Марса находятся также несколько неактивных посадочных модулей и марсоходов, завершивших исследования. Собранные ими геологические данные позволяют предположить, что большую часть поверхности Марса ранее покрывала вода. Наблюдения в течение последнего десятилетия позволили обнаружить в некоторых местах на поверхности Марса слабую гейзерную активность. По наблюдениям с космического аппарата НАСА «Марс Глобал Сервейор», некоторые части южной полярной шапки Марса постепенно отступают.
Марс можно увидеть с Земли невооружённым глазом. Его видимая звёздная величина достигает ?2,91m (при максимальном сближении с Землёй), уступая по яркости лишь Юпитеру (и то далеко не всегда во время великого противостояния) и Венера (но лишь утром или вечером). Как правило, во время великого противостояния, оранжевый Марс является ярчайшим объектом земного ночного неба, но это просходит лишь один раз в 15-17 лет в течение одной — двух недель.
Спутники Марса

Оба спутника вращаются вокруг своих осей с тем же периодом, что и вокруг Марса, поэтому всегда повёрнуты к планете одной и той же стороной. Приливное воздействие Марса постепенно замедляет движение Фобоса, и в конце концов приведёт к падению спутника на Марс (при сохранении текущей тенденции), или к его распаду. Напротив, Деймос удаляется от Марса.
Оба спутника имеют форму, приближающуюся к трёхосному эллипсоиду, Фобос несколько крупнее Деймоса. Поверхность Деймоса выглядит гораздо более гладкой за счёт того, что большинство кратеров покрыто тонкозернистым веществом. Очевидно, на Фобосе, более близком к планете и более массивном, вещество, выброшенное при ударах метеоритов, либо наносило повторные удары по поверхности, либо падало на Марс, в то время как на Деймосе оно долгое время оставалось на орбите вокруг спутника, постепенно осаждаясь и скрывая неровности рельефа.
Жизнь на Марсе

Другие многочисленные наблюдения и объявления известных лиц породили вокруг этой темы так называемую «Марсианскую лихорадку» («Mars Fever»). В 1899 году, во время изучения атмосферных помех в радиосигнале, используя приёмники в Колорадской обсерватории, изобретатель Никола Тесла наблюдал повторяющийся сигнал. Затем он высказал догадку, что это может быть радиосигнал с других планет, например, Марса. В интервью 1901 года Тесла сказал, что ему пришла в голову мысль о том, что помехи могут быть вызваны искусственно. Хотя он не смог расшифровать их значение, для него было невозможным то, что они возникли совершенно случайно. По его мнению, это было приветствие одной планеты другой.
Теория Теслы вызвала горячую поддержку Лорда Кельвина, который, посетив США в 1902 году, сказал, что по его мнению Тесла поймал сигнал марсиан, посланный в США. Однако затем Кельвин стал решительно отрицать это заявление перед тем, как покинул Америку: «На самом деле я сказал, что жители Марса, если они существуют, несомненно могут видеть Нью-Йорк, в частности свет от электричества».
На сегодняшний день условием для развития и поддержания жизни на планете считается наличие жидкой воды на её поверхности. Также существует требование, чтобы орбита планеты находилась в так называемой обитаемой зоне, которая для Солнечной системы начинается за Венерой и кончается большой полуосью орбиты Марса. Во время перигелия Марс находится внутри этой зоны, однако тонкая атмосфера, с низким давлением препятствует появлению жидкой воды на значительной территории на длительный период. Недавние свидетельства говорят о том, что любая вода на поверхности Марса является слишком солёной и кислотной для поддержания постоянной земноподобной жизни.
Отсутствие магнитосферы и крайне тонкая атмосфера Марса также являются проблемой для поддержания жизни. На поверхности планеты идёт очень слабое перемещение тепловых потоков, она плохо изолирована от бомбардировки частицами солнечного ветра, кроме того, при нагревании вода мгновенно испаряется, минуя жидкое состояние из-за низкого давления. Марс также находится на пороге т. н. «геологической смерти». Окончание вулканической активности по всей видимости остановило круговорот минералов и химических элементов между поверхностью и внутренней частью планеты.

Интересно, что в некоторых метеоритах марсианского происхождения обнаружены образования, по форме напоминающие простейших бактерий, хотя и уступают мельчайшим земным организмам по размерам. Одним из таких метеоритов является ALH 84001, найденный в Антарктиде в 1984 году.
По результатам наблюдений с Земли и данных космического аппарата «Марс Экспресс» в атмосфере Марса обнаружен метан. В условиях Марса этот газ довольно быстро разлагается, поэтому должен существовать постоянный источник его пополнения. Таким источником может быть либо геологическая активность (но действующие вулканы на Марсе не обнаружены), либо жизнедеятельность бактерий.
Колонизация Марса

Тем не менее между Землёй и Марсом есть несколько существенных различий. В частности, магнитное поле Марса слабее земного примерно в 800 раз. Вместе с разрежённой атмосферой это увеличивает количество достигающего его поверхности ионизирующего излучения. Радиационные измерения, проведённые американским беспилотным космическим аппаратом The Mars Odyssey, показали, что радиационный фон на орбите Марса в 2,2 раза превышает радиационный фон на Международной космической станции. Средняя доза составила примерно 220 миллирада в день (2,2 миллигрея в день или 0,8 грея в год). Объём облучения, полученного в результате пребывания в таком фоне на протяжении трёх лет, приближается к установленным пределам безопасности для космонавтов. На поверхности Марса радиационный фон будет, скорее всего, несколько ниже и может значительно изменяться в зависимости от местности, высоты и локальных магнитных полей.
Марс имеет определённый экономический потенциал для колонизации. В частности, южное полушарие Марса расплавлению не подвергалось, в отличие от всей поверхности Земли — поэтому горные породы южного полушария унаследовали количественный состав нелетучей компоненты протопланетного облака. По расчётам оно должно быть обогащено теми элементами (относительно Земли), которые на Земле «утонули» в её ядре при расплавлении планеты: металлы группы меди, железа и платиновые, вольфрам, рений, уран. Вывоз на Землю рения, платиновых металлов, серебра, золота и урана имеет хорошие перспективы, но требует для своей реализации наличия поверхностного водоёма с жидкой водой для обогатительных процессов.
Время полёта с Земли до Марса (при нынешних технологиях) в период противостояния (сближения Марса с Землёй) составляет около 6 месяцев и около года при максимальном отдалении Марса от Земли. Для общения с потенциальными колониями может использоваться радиосвязь, которая имеет задержку 3—4 мин в каждом направлении во время максимального сближения планет (противостояния Марса, с земной точки зрения, которое повторяется каждые 780 дней), и около 20 мин. при максимальном удалении планет (соединении Марса с Солнцем); см. Конфигурация (астрономия).
Однако к настоящему времени никаких практических шагов в направлении колонизации Марса не предпринято.
Исследования Марса

В период Нововавилонского царства вавилонские астрономы проводили систематические наблюдения за положением и движением планет. Они установили, что Марс делает 37 синодических периода или 42 зодиакальных круга, каждые 79 лет. Ими также были разработаны арифметические методы с малыми поправками для прогноза позиции планеты. В вавилонской планетарной теории были впервые получены временные измерения планетарного движения Марса и уточнено положение планеты на ночном небе.
Китайские записи о внешнем виде и движении Марса уже появляются в период до основания династии Чжоу (1045 год до н. э.), также во время династии Цинь (221 год до н. э.). Китайские астрономы делали записи о планетарных союзах планет, в том числе о соединениях с Марсом. В 375 году н. э. было отмечено покрытие Марса Венерой. Более подробно период и орбита движения планеты были вычислены во время династии Тан (618 год н. э.).
Астрономия в Древней Греции развивалась под влиянием месопотамской культуры и знаний. Из-за того, что вавилоняне отождествляли планету Марс с Нергалом — богом войны и эпидемии, греки отождествили планету с своим богом войны — Аресом (Марсом у римлян). В период становления греческой астрономии движение планет не представляет большого интереса для греков, и в учебнике Гесиода для древнегреческих школ Труды и дни (ок. 650 года до н. э.) нет упоминания о планетах.
Исследование марса в XX веке

Рентгеновское излучение с Марса, впервые обнаруженное астрономами в 2001 году с помощью космической рентгеновской обсерватории «Чандра», состоит из двух компонентов. Первая составляющая связана с рассеиванием в верхней атмосфере Марса рентгеновских лучей Солнца, в то время как вторая исходит от взаимодействия между ионами, в результате чего происходит обмен зарядами.

Первым космическим аппаратом, посетившим Марс и исследовавшим его с пролётной траектории, стал американский Маринер-4. Первым космическим аппаратом, совершившим мягкую посадку, стал советский космический аппарат Марс-3 в 1971 году. Первым аппаратом, успешно работавшим на поверхности Марса и передавшим фотографии марсианского ландшафта, стал американский Викинг-1 в 1976 году.
Основными задачами изучения Марса с орбиты искусственных спутников в 1970-е годы являлось определение характеристик атмосферы и фотографирование поверхности. Было предусмотрено изучение магнитного и гравитационного полей планеты, её тепловых характеристик, рельефа и прочего, для чего были запущены советские автоматические межпланетные станции «Марс-2» и «Марс-3». Параметры атмосферы было намечено изучать на участке спуска. В районе посадки станции предполагалось определение физических характеристик грунта определение характера поверхностной породы, экспериментальная проверка возможности получения телевизионных изображений окружающей местности, и так далее[84]. Однако, в непосредственной близости от поверхности Марса радиосвязь со спускаемым аппаратом прекратилась.

В комплексе экспериментов, проводившихся на спутниках «Марс»-2 и 3, фотографированию планеты отводилась вспомогательная роль, связанная главным образом с обеспечением привязки результатов измерений в других спектральных интервалах. Вместе с тем, снимки, выполненные на «Марсе-3» с больших расстояний, позволили уточнить оптическое сжатие планеты (отличающееся от динамического), строить профили рельефа по изображению края диска на участках большой протяженности, получить цветные изображения диска Марса путём синтезирования фотоизображений, сделанных с различными светофильтрами.


Орбитальный зонд Марс-экспресс представил доказательства в пользу гипотезы, предполагающей, что спутник Марса Фобос сформировался не из астероидов главного пояса, а из материала Красной планеты. Авторы новой работы изучали состав Фобоса при помощи фурье-спектрометра, расположенного на его борту. Помимо изучения состава Фобоса исследователи провели наиболее точное на сегодняшний день определение массы марсианского спутника и его плотности.