Солнце Солнце - источник тепла и света, без которых было бы невозможно возникновение и существование жизни на нашей планете. Уже наши предки понимали, насколько сильно их существование зависит от Солнца и относились к нему с почтительным благоговением, поклоняясь ему и обожествляя его образ. И хотя в настоящее время мы понимаем физическую природу Солнца и уже не наделяем его божественной сущностью, тем не менее его влияние на нашу жизнь от это не стало меньше. Такая высокая значимость Солнца является существенным стимулом понять как оно работает, почему изменяется и как эти изменения могут повлиять на нас с вами и, в целом, на жизнь на Земле. Наука дает нам возможность заглянуть в прошлое нашей звезды и позволяет утверждать, что во времена своей молодости (а это было более 4 миллиардов лет назад) Солнце светило значительно слабее, а еще через четыре миллиарда будет светить ярче, чем сейчас. Тем не менее жизнь на Земле существовала уже в то время, и это позволяет нам с оптимизмом смотреть в будущее, когда условия на Земле снова изменятся. Кроме постепенного увеличения светимости на протяжении миллиардов лет, Солнце может существенно меняться и за много более короткие промежутки времени. Самым известным периодом изменения Солнца является 11-летний солнечный цикл, на протяжении которого Солнце проходит через минимум и максимум своей активности. Наблюдения максимумов излучения на протяжении нескольких десятков лет позволили сделать вывод, что увеличение светимости Солнца, начавшееся миллиарды лет назад, продолжается и в наше время. За несколько последних циклов полная светимость Солнца возросла приблизительно на 0.1 %. Подобные изменения (как быстрые, так и постепенные) несомненно оказывают большое влияние на нашу жизнь, однако физические механизмы этого влияния все еще остаются неизвестными.
  • Солнце и космическая погода

  • Солнце является источником солнечного ветра, который представляет собой поток очень горячего ионизованного газа, непрерывно истекающего от Солнца в сторону Земли (и далее в межпланетное пространство) со скоростью более чем 500 км в секунду, то есть почти 2 миллиона километров в час. Поток этот мог бы представлять смертельную опасность для жизни на нашей планете, если бы мог достичь поверхности Земли. К счастью, наша планета - одна из немногих, которые обладают собственным сильным магнитным полем (магнитосферой). Поле это является непреодолимым препятствием для быстрых заряженных частиц, составляющих основу солнечного ветра, и останавливает их на большой высоте. В полярных областях, где линии магнитного поля направлены в сторону Земли, ускоренные на Солнце частицы получают возможность проникнуть намного ближе к поверхности. Благодаря этому мы можем наблюдать там одно из красивейших природных явлений - полярные сияния. Тем не менее, хотя солнечный ветер и не может проникнуть непосредственно к Земле, он при взаимодействии с земной магнитосферой возмущает и раскачивает ее. Это явление - возмущение земной магнитосферы при взаимодействии с солнечным ветром - получило название магнитных бурь, которые, как известно, могут оказывать влияние на здоровье и самочувствие людей. Помимо солнечного ветра, существенную опасность представляют вспышки на Солнце, во время которых излучаются значительные потоки ультрафиолетового и рентгеновского излучения, направленного в том числе и в сторону Земли. И хотя это излучение почти полностью поглощается газами земной атмосферы, оно представляет опасность для всего, что находится над поверхностью Земли, то есть может повредить спутники и угрожать здоровью космонавтов. И если мы заглянем в будущее, когда перед человечеством возникнет задача освоения Луны, Марса и возможно других планет Солнечной системы, не защищенных ни атмосферой, ни магнитным полем, то увидим, что реализация этой задачи невозможна без учета всех описанных эффектов космической погоды и без умения их предсказывать и от них защищаться.
  • Солнце как звезда

  • Хотя Солнце из-за близости к нам и кажется уникальным по своим характеристикам объектом, оно тем не менее представляет собой обычную звезду и, благодаря этому, играет очень важную роль в понимании строения и эволюции всех остальных звезд во Вселенной. Ни одна из звезд, кроме Солнца, не расположена к нам настолько близко, чтобы мы могли разглядеть какие-либо детали на ее поверхности. Благодаря Солнцу, мы можем догадаться, что и другие звезды, рассыпанные по небу в виде точек, представляют в действительности сложные объекты с относительно холодной поверхностью и горячей атмосферой. Мы знаем возраст Солнца, его радиус, массу, яркость. Эту информацию мы можем сравнивать с моделями звездной эволюции и, удостоверившись в их правильности, применять их и к другим объектам нашей Вселенной. Таким образом, хотя внимание солнечной астрономии и сконцентрировано преимущественно на одном объекте, она учит нас многому и о звездах, и о планетных системах, и о галактиках, и даже о самой Вселенной.
  • Солнце как физическая лаборатория

  • Солнце производит энергию благодаря термоядерному синтезу - процессу, происходящему в самом центре Солнца, при котором четыре ядра водорода под действием давления окружающей среды сливаются в одно ядро гелия. Одним из доминирующих направлений современной энергетики является воспроизводство этого процесса в лабораторных условиях на Земле. Направление это получило название - управляемый термоядерный синтез. Многие ученые в настоящее время исследуют строение Солнца для того, чтобы понять, как ведет себя плазма в реальных физических условиях с тем, чтобы попытаться затем воспроизвести эти условия на Земле. Таким образом, Солнце является еще и гигантской естественной лабораторией, позволяющей проводить важные научные эксперименты, которые по тем или иным причинам пока нельзя поставить на Земле.
  • Ранние наблюдения Солнца

  • Солнечная повозка из Трундхольма — скульптура, которая, как полагают, отражает поверье о движении солнца на колеснице, характерное для праиндоевропейской религии. С самых ранних времён человечество отмечало важную роль Солнца — яркого диска на небе, несущего свет и тепло. Во многих доисторических и античных культурах Солнце почиталось как божество. Культ Солнца занимал важное место в религиях цивилизаций Египта, инков, ацтеков. Многие древние памятники связаны с Солнцем: например, мегалиты, точно отмечают положение летнего солнечного солнцестояния (одни из крупнейших мегалитов такого рода находятся в Набта-Плайя (Египет) и в Стоунхендже (Англия)), пирамиды в Чичен-Ице (Мексика) построены таким образом, чтобы тень от земли скользила по пирамиде в дни весеннего и осеннего равноденствий, и т. д. Древнегреческие астрономы, наблюдая видимое годовое движение Солнца вдоль эклиптики, считали Солнце одной из семи планет (от др.-греч. — блуждающая звезда). В некоторых языках Солнцу, наравне с планетами, посвящён день недели.
  • Космические исследования Солнца

  • Атмосфера Земли препятствует прохождению многих видов электромагнитного излучения из космоса. Кроме того, даже в видимой части спектра, для которой атмосфера довольно прозрачна, изображения космических объектов могут искажаться её колебаниями, поэтому наблюдения этих объектов лучше производить на больших высотах (в высокогорных обсерваториях, с помощью приборов, поднятых в верхние слои атмосферы, и т. п.) или даже из космоса. Верно это и в отношении наблюдений Солнца. Если нужно получить очень чёткое изображение Солнца, исследовать его ультрафиолетовое или рентгеновское излучение, точно измерить солнечную постоянную, то наблюдения и съёмки проводят с аэростатов, ракет, спутников и космических станций.

    Фактически первые внеатмосферные наблюдения Солнца были проведены вторым искусственным спутником Земли Спутник-2 в 1957 году. Наблюдения проводились в нескольких спектральных диапазонах от 1 до 120 A, выделяемых при помощи органических и металлических фильтров.

    Первыми космическими аппаратами, предназначенными для наблюдений Солнца, были созданные NASA спутники серии «Пионер» с номерами 5—9, запущенные между 1960 и 1968 годами. Эти спутники обращались вокруг Солнца вблизи орбиты Земли и выполнили первые детальные измерения параметров солнечного ветра.

    В 1970-е годы в рамках совместного проекта США и Германии были запущены спутники Гелиос-I и Гелиос-II (англ. Helios). Они находились на гелиоцентрической орбите, перигелий которой лежал внутри орбиты Меркурия, примерно в 40 миллионах километров от Солнца. Эти аппараты помогли получить новые данные о солнечном ветре. Другое интересное наблюдение, сделанное в рамках этой программы, состоит в том, что пространственная плотность мелких метеоритов вблизи Солнца в пятнадцать раз выше, чем около Земли.

    В 1973 году вступила в строй космическая солнечная обсерватория Apollo Telescope Mount (англ.) на космической станции Skylab. С помощью этой обсерватории были сделаны первые наблюдения солнечной переходной области и ультрафиолетового излучения солнечной короны в динамическом режиме. С её помощью были также открыты корональные выбросы массы и корональные дыры, которые, как сейчас известно, тесно связаны с солнечным ветром.

    В 1980 году NASA вывело на околоземную орбиту космический зонд Solar Maximum Mission (англ.) (SolarMax), который был предназначен для наблюдений ультрафиолетового, рентгеновского и гамма-излучения от солнечных вспышек в период высокой солнечной активности. Однако всего через несколько месяцев после запуска из-за неисправности электроники зонд перешёл в пассивный режим. В 1984 году космическая экспедиция STS-41C на шаттле «Челленджер» устранила неисправность зонда и снова запустила его на орбиту. После этого, до своего входа в атмосферу в июне 1989 года, аппарат получил тысячи снимков солнечной короны. Его измерения помогли также выяснить, что мощность полного излучения Солнца за полтора года наблюдений изменилась только на 0,01 %.

    Японский спутник «Yohkoh» , запущенный в 1991 году, проводил наблюдения излучения Солнца в рентгеновском диапазоне. Полученные им данные помогли учёным идентифицировать несколько разных типов солнечных вспышек и показали, что корона даже вдали от областей максимальной активности намного более динамична, чем принято было считать. «Ёко» функционировал в течение полного солнечного цикла и перешёл в пассивный режим во время солнечного затмения 2001 года, когда он потерял свою ориентировку на Солнце. В 2005 году спутник вошёл в атмосферу и был разрушен.

    Очень важной для исследований Солнца является программа SOHO (SOlar and Heliospheric Observatory), организованная совместно Европейским космическим агентством и NASA. Запущенный 2 декабря 1995 года космический аппарат SOHO вместо планируемых двух лет работает уже более десяти (2009). Он оказался настолько полезным, что 11 февраля 2010 года был запущен следующий, аналогичный космический аппарат SDO (Solar Dynamics Observatory). SOHO находится в точке Лагранжа между Землёй и Солнцем (то есть в области, где земное и солнечное притяжение уравниваются) и с момента запуска передаёт на Землю изображения Солнца в различных диапазонах длин волн. Кроме своей основной задачи — исследования Солнца — SOHO исследовал большое количество комет, в основном очень малых, которые испаряются по мере своего приближения к Солнцу.

    Все эти спутники наблюдали Солнце из плоскости эклиптики и поэтому могли детально изучить только далёкие от его полюсов области. В 1990 году был запущен космический зонд Ulysses для изучения полярных областей Солнца. Сначала он совершил гравитационный манёвр возле Юпитера, чтобы выйти из плоскости эклиптики. По счастливому стечению обстоятельств ему также удалось наблюдать столкновение кометы Шумейкеров — Леви 9 с Юпитером в 1994 году. После того как он вышел на запланированную орбиту, он приступил к наблюдению солнечного ветра и напряжённости магнитного поля на высоких гелиоширотах. Выяснилось, что солнечный ветер на этих широтах имеет скорость примерно 750 км/с, что меньше, чем ожидалось, и что на них существуют большие магнитные поля, рассеивающие галактические космические лучи.

    Состав солнечной фотосферы хорошо изучен с помощью спектроскопических методов, однако данных о соотношении элементов в глубинных слоях Солнца гораздо меньше. Для того, чтобы получить прямые данные о составе Солнца, был запущен космический аппарат Genesis. Он вернулся на Землю в 2004 году, однако был повреждён при приземлении из-за неисправности одного из датчиков ускорения и не раскрывшегося вследствие этого парашюта. Несмотря на сильные повреждения, возвращаемый модуль доставил на Землю несколько пригодных для изучения образцов солнечного ветра.

    22 сентября 2006 года на орбиту Земли была выведена солнечная обсерватория Hinode (Solar-B). Обсерватория создана в японском институте ISAS, где разрабатывалась обсерватория Yohkoh (Solar-A) и оснащена тремя инструментами: SOT — солнечный оптический телескоп, XRT — рентгеновский телескоп и EIS — изображающий спектрометр ультрафиолетового диапазона. Основной задачей Hinode является исследование активных процессов в солнечной короне и установление их связи со структурой и динамикой магнитного поля Солнца. В октябре 2006 года была запущена солнечная обсерватория STEREO. Она состоит из двух идентичных космических аппаратов на таких орбитах, что один из них постепенно отстанет от Земли, а другой обгонит её. Это позволит с их помощью получать стереоизображения Солнца и таких солнечных явлений, как корональные выбросы массы.

    В январе 2009 года состоялся запуск российского спутника «Коронас-Фотон» с комплексом космических телескопов «Тесис». В состав обсерватории входит несколько телескопов и спектрогелиографов крайнего ультрафиолетового диапазона, а также коронограф широкого поля зрения, работающий в линии ионизованного гелия HeII 304 A. Целью миссии «Тесис» является исследование наиболее динамичных солнечных процессов (вспышек и корональных выбросов массы), а также круглосуточный мониторинг солнечной активности с целью раннего прогнозирования геомагнитных возмущений. 11 февраля 2010 года в США с космодрома на мысе Канаверал стартовала ракета-носитель Atlas V. Задача запуска — вывести на геостационарную орбиту новую солнечную обсерваторию SDO (Solar Dynamic Observatory).
    Hosted by uCoz